
Journal of Quantitative Spectroscopy &
Radiative Transfer 82 (2003) 517–531

www.elsevier.com/locate/jqsrt

A simple analytical parameterization for the water vapor
millimeter wave foreign continuum

Q. Maa ;∗, R.H. Tippingb
aDepartment of Applied Physics, Columbia University, NASA/Goddard Institute for Space Studies,

2880 Broadway, New York, NY 10025, USA
bDepartment of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA

Received 23 December 2002; received in revised form 28 February 2003; accepted 3 March 2003

Abstract

We present a theoretical calculation of the millimeter wave foreign continuum due to colliding pairs of H2O–
N2 molecules. The theory is formulated using the symmetrized spectral density which ensures that the principle
of detailed balance is satis5ed. It is based on the Lanczos algorithm, and the resulting tri-diagonal matrix is
written in terms of continued fractions. The calculations are carried out in the coordinate representation in
which the basis functions are delta functions whose arguments are the angular variables necessary to specify the
molecular orientations. In this representation, the anisotropic interaction potential responsible for the continuum
absorption is diagonal, and the ensemble averages over the states become multidimensional integrations. These
are computed using the Monte Carlo method. The results, computed for a range of temperatures relevant to
the atmosphere, are compared to laboratory measurements and to widely used empirical models. For easy use,
we 5t our results for the absorption coe;cient to a simple analytic function of frequency and temperature.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Accurate speci5cation of continuum absorption is essential to the accuracy of satellite retrievals.
This applies to microwave sounding instruments such as NAST-M, but is particularly true for the
Microwave Limb Sounder (MLS) [1] where the minimum retrievable altitude for tropospheric water
vapor will be determined from the baseline (what is left after the line contribution is removed). Since
the baseline is the atmospheric continuum, which depends on moisture, temperature, and pressure,
accurate constituent retrievals depend critically on getting the background absorption correct.
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At present, our understanding of the problem is not satisfactory. There are only a few laboratory
measurements of the water vapor millimeter continuum absorption that have been carried out [2].
The most recent ones are by Liebe’s group at 138 GHz [3,4] and by Bauer’s group at 190, 213, 153,
239 and 350 GHz [5–9]. Due to experimental di;culties, these results contain large uncertainties.
The situation is even worse for the foreign continuum because, in general, these values are small and
they have to be derived by subtracting the self-continuum and local line contributions from the raw
data. In addition, except for Liebe’s data at 138 GHz which contain values obtained at T = 282 K,
all others for 153, 190, 213, 239, and 350 GHz provided by Bauer’s group are obtained at room
temperature and above. At present the temperature dependence of the continuum absorption is not
well known, so that extrapolation of these values to much lower temperatures is very risky, and
there is no proper way to estimate how much error could be introduced.

On the other hand, of the several empirical models available [10–12], none of them meets the
desired accuracy, or works satisfactorily for all atmospheric conditions. This is not surprising since
all empirical models assumed to be applicable for a wide range of temperature are constructed
mainly by matching laboratory data, which are available only for a limited high temperature part.
More speci5cally, the most widely used Liebe MPM89 model [10] is based on their measurements at
138 GHz, and the new version, MPM93 [11], is a combination of their own data and others, including
Bauer’s data for 190 and 213 GHz. It turns out that the MPM93 model diLers signi5cantly from
the MPM89 version both for the self- and foreign continuum, and neither of them is able to predict
the continuum well. By analyzing diLerences between these two models, Rosenkranz concluded that
the best model is a combination of the MPM93 self-continuum model plus the MPM89 foreign
continuum. This latter combination, labeled by some people as ROS98, is currently the favored
model. Recently, measurements of the submillimeter atmospheric transmission made on Mauna Kea
during extremely dry El Niño conditions by Pardo et al. [13] suggest that the H2O continuum-like
terms de5ned in MPM93 and MPM89 are not accurate in the submillimeter range, and they found
that their best-5t values lie between those predicted by these two models. Given the fact that in these
extremely dry air conditions the foreign continuum is dominant and is identical in both ROS98 and
MPM89, their conclusion is also applicable to ROS98. We note that the temperature dependence
of the foreign continuum in the MPM89 model (and also in ROS98) has been simply assumed
to be T−3. This assumption implies that the spectral density F(!), which contains all dynamical
information about the broadening process, does not depend on temperature, and this is not consistent
with our physical understanding of the collisional process. In summary, there is a de5nite need to
re5ne the empirical models.

Theoretical calculations have made a major contribution to our understanding of the water vapor
continuum. However, there is a lack of theoretical work from which one is able to predict the
millimeter wave foreign continuum quantitatively accurately. Although the recent far-wing line shape
theory works well in calculating continuum absorptions for the infrared spectral region [14–16] its
applicability in the millimeter wave region is questionable. The main reason for this is not the
far-wing line shape theory itself, but the band average approximation, the usual procedure introduced
to simplify calculations. This approximation is not valid for the millimeter wave spectral range.
Fortunately, an alternative theoretical method is available to calculate millimeter wave continua.
This is the Lanczos algorithm which has been used successfully to calculate the millimeter wave
self-continuum [17]. With the Lanczos algorithm, we have shown that the spectral density can be
written as a continued fraction, and by using the lowest-order truncation, we can calculate the
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absorption. However, for calculating the foreign continuum due to H2O–N2 collision pairs, there is
no contribution to the absorption from the lowest-order truncation of the continued fractions and,
thus, one has to consider higher-order fractions that are intractable using standard computational
methods.

A breakthrough to address this problem arose indirectly from our far-wing line shape research. In
the past few years, we have developed a 5rst-principles far-wing line shape formalism and applied
it to H2O continuum absorption in the infrared spectral region [14–16]. To overcome convergence
problems, we introduced the coordinate representation in which the eigenfunctions of the orientations
of the two interacting molecules are chosen as the complete set of basis functions in Hilbert space. In
this representation, the interaction potential is diagonal, ensemble averages become multidimensional
integrations over the continuous angular variables, and as many states as desired can be included
in the calculations. The convergence criterion is thus transformed to the feasibility of calculating
these multidimensional integrations, and these can be successfully evaluated using the Monte Carlo
method. Recently, by using the coordinate representation and the Monte Carlo method, we have
carried out preliminary calculations for the millimeter wave foreign continuum based on the Lanczos
algorithm and we obtained results in reasonable agreement with both experimental data and empirical
models [18]. In the present paper, we present an improved formulation starting from the symmetrized
spectral density instead of the standard, non-symmetrized one used previously. This has two major
advantages: 5rst, because of symmetry the numerical calculations are reduced by a factor of 2; and
second, detailed balance can be maintained at every order of truncation of the continued fractions. As
a result, we feel that the results are more accurate than those obtained without the symmetrization.

2. General formalism

2.1. Absorption coe<cient and spectral density

As is well known, the absorption of radiation at frequency ! per unit volume of a gaseous sample
in thermal equilibrium at temperature T is characterized by the absorption coe;cient �(!):

�(!) =
4�2

3˝c!(e
	˝! − 1)F(!)

=
4�2

3˝c! tanh(	˝!=2){F(!) + F(−!)}; (1)

where the spectral density F(!) is the Fourier transform of the correlation function C(t) of the
dipole moment operator; that is

F(!) =
1
�
Re

∫ ∞

0
ei!tC(t) dt (2)

and

C(t) = Tr(�̃†e−iHt��̃eiHt); (3)

where �̃ is the dipole moment operator of the sample and � is the density matrix. For later con-
venience, we introduce the symmetric correlation function C̃(t) ≡ C(t + i	˝=2) and its Fourier
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transform, the symmetric spectral density F̃(!). In terms of the later, one can express �(!) as

�(!) =
8�2

3˝c ! sinh(	˝!=2)F̃(!): (4)

It is easy to show that C̃(−t) = C̃(t), F̃(−!) = F̃(!), and, in addition, F̃(!) = exp(	˝!=2)F(!).
With the expressions for C̃(t),

C̃(t) = Tr(
√
��̃†e−iHt√��̃eiHt)

= Tr(�1=4�̃†�1=4e−iHt�1=4�̃�1=4eiHt); (5)

one is able to express F̃(!) as

F̃(!) =−1
�
Im Tr

{
�1=4�̃†�1=4 1

!−L
�1=4�̃�1=4

}
: (6)

In the above expression, the Liouville operator L associated with the total Hamiltonian H is de5ned
as

LA ≡ HA− AH; (7)

where A is an arbitrary operator in Hilbert space.
In the present study, we only consider low-pressure cases in which both the water vapor density

and the nitrogen buLer density are low. Based on the binary collision approximation, one can further
focus on a single H2O–N2 pair and neglect its correlation with others. As a result, the absorption
coe;cient �(!) of the whole gas sample can be expressed as

�(!) = npair
8�2

3˝c ! sinh(	˝!=2)F̃(!); (8)

where npair is the number density of pairs and it is proportional to the product of the pressures of
H2O and N2; F̃(!) is the spectral density of the pair whose expressions are the same as Eq. (6),
except all the quantities belong to the pair only. For simplicity, we do not introduce new symbols for
the two-molecule system. The Liouville operator L can be expressed as the sum of its components

L=La +Lb +L1; (9)

corresponding to the unperturbed H2O molecule, the unperturbed N2, and the anisotropic interaction
between H2O and N2.

In the present study, the frequencies of interest are only a few cm−1 which are much smaller than
the strong resonance line frequencies. As shown later, during collision processes, the anisotropic
interaction can cause millimeter wave continuum absorptions when H2O and N2 have separations
beyond 3:5 OA. It is well known that at this range, the whole interaction is rather weak and the
anisotropic part is even weaker. Therefore, one can conclude that not only Viso(r)¡Ha, but also
Vani(r)¡Ha. We note that based on the latter, we can draw a further conclusion that L1 ¡La,
which will be used in our later discussions. Then, we can introduce the approximation � � �a�b�iso

in Eq. (6) and, in addition, we can exclude the component Lb from L because Hb commutes with
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(�a�b�iso)1=4�̃(�a�b�iso)1=4. By dividing all degrees of freedom of the two interacting molecules into
internal and translational degrees, we rewrite the expression for F̃(!) as

F̃(!) =−1
�
Im Trr

{
�isoTrab[�1=4

a �̃†�1=4
a

√
�b

1
!−L

√
�b�1=4

a �̃�1=4
a ]

}
: (10)

In the above expression, the trace operator Trab is over the internal degrees and the trace operator
Trr is over the translational degrees. It turns out that to carry out Trab is much more di;culty than
Trr . Therefore, we focus our attention on Trab 5rst and apply the Lanczos algorithm to solve the
problem.

2.2. Lanczos algorithm

We do not describe this method in detail here, rather the reader is referred to the review by
Moro and Freed and references therein [19]. In line space, the Liouville operator L and therefore
the resolvent operator (! − L)−1 are matrix operators; ordinary (in Hilbert space) operators for
instance, (�a�b)1=4�̃(�a�b)1=4 are vectors. One begins by de5ning a starting vector (in line space)

|1〉= |v〉=
√

〈v|v〉; (11)

where |v〉 ≡ |(�a�b)1=4�̃(�a�b)1=4〉 and from this, one generates a complete set of basis vectors
(|1〉; |2〉; : : : ; |n〉; : : :) according to

	2|2〉= (1− P1)L|1〉;
	3|3〉= (1− P2)L|2〉;

...

	n|n〉= (1− Pn−1)L|n− 1〉: (12)

In these expressions, Pn are the projection operators

Pn =
n∑

i=1

|i〉〈i| (13)

and the quantities 	n are determined from the normalization requirement (〈n|n〉=1); these are given
by

	n = 〈n|L|n− 1〉 for n¿ 1: (14)

The matrix representation of L in line space given in the complete basis (|1〉; |2〉; : : :) has the
symmetric tridiagonal form whose oL-diagonal elements are 	n (n = 2; 3; : : :) and whose diagonal
elements, �n (n= 1; 2; : : :), are given by

�n = 〈n|L|n〉: (15)
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Then, one can write the inner trace of F̃(!) in terms of a continued fraction

Trab

[
�1=4
a �̃†�1=4

a
√
�b

1
!−L

√
�b�1=4

a �̃�1=4
a

]
=
〈
v
∣∣∣∣ 1
!−L

∣∣∣∣ v
〉

= 〈v|v〉 1

!− �1 − 	22

!−�2− 	23
!−�3−···

: (16)

It is worth mentioning that all quantities 〈v|v〉, �n, and 	n appearing in the continued fraction
expression are matrix elements. However, except for 〈v|v〉, their values can vary because L1 depends
on the separation r between the two molecules; thus �n and 	n depend on r also. As shown later,
the translational motion of two molecules can be treated classically so that one can consider r as a
parameter here. All these �n and 	2

n can be given in terms of matrix elements of L and its powers
between the starting vector |1〉. The expressions for those appearing explicitly in Eq. (16) have been
given in our recent paper [18] and will not presented here.

The continued fraction expression for F̃(!) is the starting formula to carry out numerical calcula-
tions. In practice, one has to introduce a cut-oL in Eq. (16) to limit fractions included and to make
sure results obtained accordingly are converged. A simple convergence criterion is the requirement

	2
n��n−1�n for n¿ 1: (17)

When the lowest order cut-oL is chosen, the continued fraction is simply (! − �1)−1 and there is
only one matrix element 〈1|L|1〉 required. For the next cut-oL, one needs to calculate �1, 	2

2, and �2.
This implies that one needs to know 〈1|L2|1〉 and 〈1|L3|1〉 as well. If one goes one step further, 	2

3
and �3 are needed and two additional matrix elements 〈1|L4|1〉 and 〈1|L5|1〉 are required. Because
La is the dominant part of L, we can calculate the matrix elements 〈1|Li

a|1〉 with i = 1; 2; : : :
5rst and treat contributions from L1 as corrections. We note that the former are independent of the
parameter r while the latter are functions of r.

2.3. Two starting vectors

By neglecting contributions from L1, we can easily evaluate �1, 	2
2, �2, 	2

3, and �3 which are
just 5 numbers. However, it turns out that the magnitudes of �1, �2, and �3 are zero and this causes
a failure of the convergence criterion Eq. (17). This is due to the cancellation between positive
resonance lines of H2O and negative resonance ones. Therefore, in order to guarantee convergence,
one can divide |v〉 into two parts: |v〉+ associated with the positive resonance lines, and |v〉− with
the negative resonance ones. The physical meaning of this division is to separate an average over
the whole band of H2O into two averages, one over the positive resonance lines and the other over
the negative resonance ones.

Using |v〉+ and |v〉−, the inner trace of F̃(!) can be expressed as a sum over two terms

Trab

[
�1=4
a �̃†�1=4

a
√
�b

1
!−L

√
�b�1=4

a �̃�1=4
a

]

=+

〈
v
∣∣∣∣ 1
!−L

∣∣∣∣ v
〉
+

+ −
〈
v
∣∣∣∣ 1
!−L

∣∣∣∣ v
〉

−: (18)
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By following the same procedure as described above, we can rewrite each term as a continued fraction
as in Eq. (16). Accordingly, there are two sets of �n and 	2

n to be evaluated. However, these two
sets are not independent. In fact, the 	2

n are identical and the �n have the same magnitudes, but
diLerent signs. Therefore, we need only to carry out calculations of �n and 	2

n associated with one
set, say, with |v〉+.

The explicit expression for the line space vector |v〉+ is given by

|v〉+ =
∑
j m

∑
j′ ′m′

∑
ln

{√
gle−	E(l)=2(g g ′)1=4e−	[E( j;  )+E( j′ ;  ′)]=4

× 〈 j m|̃�| j′ ′m′〉=
√

QaQb

}
× | j mln〉〈 j′ ′m′ln|; (19)

where |j mln〉 is a simple notation for |j m〉 ⊗ |ln〉, g and gl are the nuclear spin degeneracy
factors for H2O and N2, Qa and Qb are the partition functions of H2O and N2, respectively, and the
summation over j′ and  ′ is limited to a range with E(j′;  ′)¡E(j;  ). We introduce a normalization
constant M+ de5ned by

M+ =
∑
j 

∑
{ j′ ′}+

(2J + 1)
√
g g ′e−	[E( j;  )+E( j′ ;  ′)]=2|�j ;j′ ′ |2=Qa; (20)

where the summation indicated by the symbol {j′ ′}+ is limited to a range with E(j′;  ′)¡E(j;  ).
In the above expression, �j ;j′ ′ are associated with the reduced dipole matrix elements, but exclude
the magnitude � of the dipole operator of H2O; their expression has been given in Ref. [18]. It is
obvious that +〈v|v〉+ = �2M+.

2.4. Matrix elements of +〈1|Li|1〉+

Based on a binomial expansion of (La +L1)i, there are 2i terms of +〈1|Li|1〉+ which can be
catalogued into i+1 groups according to the powers of L1. The group without L1 present contains
only one term +〈1|Li

a|1〉+ and can be expressed as

+〈1|Li
a|1〉+ =

1
M+

∑
j 

∑
{j′ ′}+

(2J + 1)
√
g g ′e−	[E( j;  )+E( j′ ;  ′)]=2

×|�j ;j′ ′ |2{E(j;  )− E(j′;  ′)}i=Qa: (21)

By including all states of H2O up to Jmax=26, we can easily calculate +〈1|Li
a|1〉+ for i=1; 2; 3; 4, and

5 from Eq. (21); for T =296 K, we obtain the corresponding values: 104:850 cm−1, 15351:0 cm−2,
2:86506× 106 cm−3, 6:42481× 108 cm−4, and 1:66650× 1011 cm−5, respectively.

If one ignores contributions from other groups containing L1 and its powers, we obtain �1 =
104:850 cm−1, 	2

2 =4357:56 cm−2, �2 =183:275 cm−1, 	2
3 =10345:51 cm−2, and �3 =246:611 cm−1.

From these values, it is easy to check that the convergence criterion is satis5ed because 	2
2=(�1�2)=

0:227 and 	2
3=(�2�3) = 0:229. Based on these values, explicit expressions for F̃(!) in terms of the

two continued fraction are known. Then, one can easily 5nd the poles of the fractions on the !
axis. For the lowest-order cut-oL, there are two poles: != 104:850 cm−1 and !=−104:850 cm−1,
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one from each of the continued fractions, respectively. For the next order, there are four poles: !=
67:282 cm−1, 220:843 cm−1 and !=−67:282 cm−1, −220:843 cm−1 associated with |1〉+ and |1〉−,
respectively. Similarly, for the next higher-order shown explicitly in Eq. (16), there are six poles:
!=50:4437, 155.566, 328:727 cm−1 and !=−50:4437, −155:566, −328:727 cm−1, respectively. As
shown by these numbers, the poles of these two continued fractions are symmetrically located about
the origin of the ! axis. Because there is no pole within the millimeter spectral region, it seems
that without considering the interaction between H2O and N2, there are no local line absorptions in
this region at all. Clearly, the above statement is not correct because there are a few relatively weak
lines there. But, given the fact that most of the lines of the pure rotational band are located beyond
the millimeter spectral region, and that results from the Lanczos algorithm represent averaged eLects
mainly over these lines, our 5nding is consistent. This implies that it is the anisotropic interaction
that plays the crucial role in causing the millimeter wave absorption.

Our next eLort is to calculate contributions from other groups. As shown later, due to anti-
symmetry of their integrand, the matrix elements of the terms linear in L1 are zero. Thus, we need
to consider groups whose terms contain L2

1 and higher powers. At this stage, if one uses the usual
method to evaluate the corresponding matrix elements, the calculations becomes intractable. We can
circumvent this by introducing the coordinate representation. We do not discuss the advantages of
coordinate representation here, but simply claim that no matter how complicated L1 is or how
many powers of L1 appear in these terms, they are just multidimensional integrations with ordinary
functions as integrands that can be successfully evaluated using the Monte Carlo method [15,16].

As an example, we show how to calculate the matrix element +〈1|L2|1〉+ here. This matrix
element contains 4 terms which can be cataloged into 3 groups

+〈1|L2|1〉+ = +〈1|L2
a|1〉+ + +〈1|L1La|1〉+ + +〈1|LaL1|1〉+ + +〈1|L2

1|1〉+: (22)

The 5rst term does not contain L1 and its value is already known. The second and third terms are
linear in L1. We adopt the notation that (a) is used to represent the orientation of H2O with three
Euler angles �), 	), and *) and (b) for N2 with the two angles +) and ’). Then, we can express
the basis function |)〉 in the coordinate representation as

|)〉= |-((a − (a))-((b − (b))〉: (23)

We note that these basis functions are eigenfunctions of Vani,

Vani(r; (a; (b)|)〉= Vani(r; (a); (b))|)〉; (24)

where Vani(r; (a); (b)) are the eigenvalues; i.e., they are simply values of Vani at positions of the pair
speci5ed by r, (a), and (b). For simplicity, we will denote Vani(r; (a); (b)) by Vani()). In terms of
this basis set, one is able to rewrite the second term +〈1|L1La|1〉+ as

+〈1|L1La|1〉+ =
1

M+

∫∫
d()d(.[Vani())− Vani(.)]

×〈.|�1=4
a �̃†

+�
1=4
a
√
�b|)〉〈)|√�bLa�1=4

a �̃+�1=4
a |.〉; (25)

where d() denotes the volume element and the subscript + of �+ implies that its components lie in
a subspace constructed from the positive resonance lines only. Because the integrand in Eq. (25) is
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anti-symmetric with respect to ) and ., the value of this term is zero. Similarly, we can conclude
that the third term is zero too.

The last term is given by

+〈1|L2
1|1〉+ =

1
M+

∫∫
d() d(.[Vani())− Vani(.)]2

×〈.|�1=4
a �̃†

+�
1=4
a

√
�b|)〉〈)|√�b�1=4

a �̃+�1=4
a |.〉: (26)

The original dimensionality of the integration in Eq. (26) is 10. However, due to the rotational
symmetry of the system about the z-axis in the space-5xed frame, one can always reduce the di-
mensionality by one. Then, using the Monte Carlo method, we can carry out the multidimensional
integrations in which the integrand is an ordinary function. Although using the coordinate repre-
sentation and the Monte Carlo method enables us to calculate the matrix element +〈1|L2

1|1〉+, the
calculation is still time consuming. We have developed helpful techniques including the use of distri-
bution functions to handle the calculation. Because these techniques have been explained in detail in
our recent work [14–16], we do not discuss them here. Finally, as mentioned previously, this matrix
element depends on the parameter r. In practice, we select 80 values of r to cover the whole range
of the interaction between H2O and N2 and calculate the corresponding matrix elements. Similarly,
we can calculate matrix elements +〈1|L3|1〉+; +〈1|L4|1〉+, and +〈1|L5|1〉+. Detailed discussions
about these calculations can be found in our recent paper [18].

2.5. Interaction potential

It is well known that the interaction potential, especially its anisotropic part, plays a crucial role
in pressure broadening, as is the case here. This implies that in the theoretical modeling, one has to
adopt a potential model that is as accurate as possible. Within the present formalism, one is free to
choose any isotropic potential model Viso(r) because Viso(r) appears only in Trr (but not in Trab),
and thus only needs to be calculated once. In our recent work, we adopted a Lennard-Jones model
with the two parameters 0= 3:40 OA and 1=k = 168:0 K.

With respect to the anisotropic potential, there is a practical limit to the choice of models be-
cause their values have to be evaluated billions times in the calculations. Thus, one has to select
anisotropic models with relatively simple forms and a modest number of parameters. As shown later,
it is the middle-range anisotropic part that plays the main role in determining the millimeter wave
foreign continuum. Therefore, it is essential to adopt a model whose middle-range anisotropic part
is as accurate as possible. Because the H2O molecule has a large dipole moment, the middle-range
anisotropic potential can be well modeled by the dipole–quadrupole interaction

Vdq(r; (a; (b) =
3�3
2r4

[cos 	a(3 cos2 +b − 1)− 2 sin 	a sin +b cos +b cos (�a − ’b)]; (27)

where � and 3 are values of the dipole of H2O and the quadrupole of N2, respectively, and
� = 1:8546 D and 3 = 1:466 D OA are well known. We note that in writing the above expres-
sion, one adopts the II r representation of H2O in which the dipole moment lies along the Z-axis
of molecule-5xed frame. With Eq. (27), one can conclude that the dipole–quadrupole interaction
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contains a cyclic coordinate because it is independent of the Euler angle *a of H2O. Then, if the
short-range potential model used also has the same symmetry, it is possible to reduce the required
numerical calculations dramatically. In general, the dimensionality of the integration over angular
variables for the H2O–N2 pair, is 9. However, because the potential is independent of *a, two
integrations over the initial angle *a and 5nal angle *′a can be carried out analytically. As a result,
all the nine-dimensional integrations are reduced to seven-dimensional ones. In the present study,
we adopt the same site–site model to represent short-range repulsive interaction that was used in
our recent paper [18]. This model assumes that all force centers of H2O are located along its Z-axis
and has two parameters, V0 and �0. We choose their values V0=k = 5:0 × 107 K and �0 = 0:225 OA
in present calculations. As an independent check, we calculate theoretical predictions of the second
virial coe;cients (i.e., B(T )=34:81, 27.60, 21.62, and 16:60 cm3=mol for T=298:15, 323.15, 348.15,
and 373:15 K, respectively) which agree well with measurements (viz., B(T )=40±6, 28±5, 20±4,
15:5± 3 cm3=mol).

2.6. Poles of the continued fractions

After obtaining the matrix elements, the most di;cult job, i.e., performing the Trab operation, is
5nished, and the results obtained are represented by two fractions associated with the positive and
negative resonance lines, respectively. By considering ! as a variable in the complex plane, one can
easily 5nd the poles and residues from each of these fractions. However, because the two fractions
are not independent, their poles have the same magnitudes, but with opposite signs. In addition, a
pole belonging to one fraction and its mirror belonging to the other fraction have the same residue.
As a result, we can express these two fractions as

+

〈
v
∣∣∣∣ 1
!−L

∣∣∣∣ v
〉
+

+ −
〈
v
∣∣∣∣ 1
!−L

∣∣∣∣ v
〉
−
= �2M

3∑
i=1

{
Ri(r)

!− zi(r)
+

Ri(r)
!+ zi(r)

}
; (28)

where i=1; 2, and 3 resulting from a choice of the third-order cut-oL used in the present study. In the
above expression, zi(r) are the poles derived from the fraction associated with the positive resonance
lines and Ri(r) are corresponding residues. Because |v〉+ and |v〉− have the same normalization
constant (i.e., M+ =M−), we have used the symbol M to represent them in Eq. (28). At this stage,
we have obtained six poles and three residues. Each of them is a function of r and is characterized
by 80 points because we have selected 80 diLerent r values in the calculations. In general, these
poles can be complex numbers, but some are real. Among them, we are most interested in those
whose values are real and located between 0 cm−1 and, say, ±15 cm−1. We found that among the
six poles there is one pole and its mirror partner which satisfy these criteria, and their values vary
smoothly with r. We present these poles calculated for T = 270, 296, and 330 K in Fig. 1 to show
how they are distributed on the frequency axis. As shown by the 5gure, the pair of poles obtained for
T =296 K are represented by two smooth curves which mirror each other, cross at around r=4:0 OA,
and approach asymptotic limits ±50:4437 cm−1, respectively, as r goes to in5nity. By comparing
curves representing diLerent temperatures, we 5nd that the crossing distance r becomes smaller as
the temperature increases. Finally, we 5nd that the range of distances r between 3.5 and 4:5 OA is of
greatest interest to us because frequency values within 0 to ±15 cm−1 of these curves are located
there.
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Fig. 1. The calculated poles of the continued fractions as function of r for T =270, 296, and 330 K. They are represented
by the solid, dot-dashed, and dotted lines, respectively. For a speci5ed temperature, there are two set of curves associated
with the positive and negative resonance lines, respectively. As r increases, the positive slope curve belongs to the former
and the negative one to the later.

2.7. A classical ensemble average over the translational motion

Now, we can carry out the operation Trr . Because the millimeter wave spectral region is far away
from the strong lines of the pure-rotational band of H2O, we introduce the quasistatic approximation
in which the collisions are assumed to be of in5nite duration and the translation motions can be
treated classically. Then, the ensemble average of results obtained from Trab over the translational
motion becomes an integration over r from 0 to in5nity with �iso = exp(−	Viso(r)) as its weighting
function. The latter can be easily carried out with the Cauchy’s integral formula and the results are
contributions to the absorption coe;cients from the poles of interest. For example, let us assume
that z(r0) is one pole of interest by z(r0) and its mirror are one pair of poles of interest. We can
easily calculate the value of F̃(!0) with !0 = z(r0) and obtain the corresponding contribution to the
absorption coe;cient at this frequency

�(!0) = npair
32�3

3˝c !0 sinh(	˝!0=2)�2M
R(r0)
|z′(r0)| r

2
0e

−	Viso(r0); (29)

where z′(r) ≡ dz(r)=dr. As shown by Eq. (29), the calculation of �(!0) is straightforward because
all quantities appearing on the right-hand side of the equation are known. By combining contributions
from all poles of interest, we know values of the absorption coe;cients at many frequency points.
Because the millimeter wave continuum absorption is a smooth function of frequency, its value at
any ! can easily be found.

2.8. Numerical results and a simple parameterization for �(f; T )

We calculate absorption coe;cients of H2O–N2 for frequencies f below 450 GHz for a dozen
temperatures ranging from 220 to 330 K. We plot the 12 results obtained for T =220; 230; : : : ; 330 K
in Fig. 2. In order to compare our theoretical values with those predicted from MPM89 and MPM93,
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Fig. 2. The calculated H2O–N2 millimeter wave continuum
(in units of dB/km kPa−2) for T = 220; 230; : : : ; 330 K;
these are represented by 12 lines from the top to the
bottom, respectively. The results are well 5tted by a
simple formula: �(f; T ) = APH2OPN2f

B(300=T )C with
A= 1:5915× 10−7, B = 2:059, and C = 4:982.

Fig. 3. The calculated H2O−N2 continuum for T=296 K
are represented by the solid line. The corresponding val-
ues derived from the MPM89 and MPM93 models are
represented by the dotted and dashed lines, respectively.
The values deduced from the Bauer et al. measurements
at 153.000, 213.525, 239.370, and 350.300 GHz are rep-
resented by a symbol +.

we plot the results obtained for T = 296, 330, and 270 K in Figs. 3–5, respectively. In Figs. 3 and
4, we also plot values obtained by subtracting the local Van Vleck–Weisskopf line contributions up
to 1000 GHz from the Bauer et al. measurements of H2O − N2 at 153.000, 213.525, 239.370, and
350:300 GHz, respectively. As shown in these 5gures, the theoretical predictions are smooth functions
of the frequency and they increase almost quadratically as the frequency increases. In comparison
with MPM89 and MPM93, our values lie between them. In addition, except for f = 153:000 GHz,
our values agree well with those from the Bauer et al. measurements. Finally, in order to show
the temperature dependence more clearly for the four speci5ed frequencies f = 153:000, 213.525,
239.370, and 350:300 GHz, respectively, we calculate �(f; T ) for T = 260; 270; : : : ; 370 K and plot
�(f; T )=f2 in Fig. 6. As shown in the 5gure, they are four straight lines, the 5rst three are almost
identical and the forth is parallel with a little separation. This implies that the temperature dependence
of �(f; T ) can be well characterized by TN where the index N is a constant. On the other hand, the
frequency dependence is not exactly quadratic, but very close. We also plot the corresponding values
obtained from the MPM89 and MPM93 models, and those deduced from the measurements of Bauer
et al. in the same 5gure. Because the MPM89 model is proportional to f2T−3, it is represented by
one straight line only. Meanwhile, each of the MPM93 model and Bauer et al. data is represented by
four lines. As shown in the 5gure, our results, those of Bauer et al., and the MPM93 model exhibit
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Fig. 4. The same as Fig. 3, except for T = 330 K. Fig. 5. The same as Fig. 3, except for T = 270 K and
no experimental data.

Fig. 6. A log–log plot of the calculated H2O − N2 millimeter wave continuum divided by the square of f at 153.000,
213.525, 239.370, and 350:300 GHz, respectively, as a function of the temperature. The theoretical values are represented
by the solid lines with diLerent symbols marked at their ends. Those from the MPM93 model are represented by the four
dotted lines with similar end marks. Because the continuum of the MPM89 model is proportional to f2, their values are
presented by one straight dashed line. The Bauer et al. values are plotted with +; ∗;� and ◦, respectively; for clarity, the
same symbol is linked by the dot-dashed line.
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a very similar negative temperature dependence, much stronger than the MPM89 model. By 5tting
our results calculated for a dozen diLerent temperatures ranging from 220 to 330 K, an analytical
parameterization for the continuum (in dB/km), applicable for frequencies up to 450 GHz, can be
expressed as

�(f; T ) = 1:5915× 10−7PH2OPN2(300=T )
4:982f2:059; (30)

where the pressures PH2O and PN2 are given in kPa. This parameterization diLers slightly from our
previous result [18] because diLerent parameters V0, �0, 0, and 1 have been used in the calculations.
In the above expression, as expected, the frequency dependence of �(f; T ) is very close to, but
not exactly quadratic. Meanwhile, the temperature index obtained is a constant −4:982 which diLers
signi5cantly from −3 of the MPM89 model. Finally, we note that the above formula represents
the calculated continuum only, and contributions from individual lines must be added to obtain the
absorption coe;cient [20].

3. Discussion and conclusions

From the work presented above, we can draw several conclusions. First, the Lanczos algorithm,
when carried out in the coordinate representation and using the Monte Carlo method to compute
accurately the multidimensional integrations, is a powerful tool for calculating the water vapor mil-
limeter wave foreign continuum. This absorption is due to the anisotropic interaction potential; more
speci5cally, to the range of separations between 3.5 and 4:5 OA, where it can be well represented
by the dipole–quadrupole term. In general, the theoretical results are in good agreement with the
experimental results of Bauer et al. (except for the results at 153 GHz), especially considering the
di;culty of the measurements and the data reduction needed to extract the weak foreign continuum.
When compared to the empirical results of Liebe, our results lie between the MPM89 and MPM93
models, but the temperature dependence is closer to the latter model. Clearly, the T−3 dependence
assumed in the MPM89 model, which ignores the T -dependence of the spectral density that contains
information about the collisional process, is not a good approximation, whereas the (approximate)
quadratic dependence on the frequency is reasonably good.

Second, while there are several re5nements that can be made to the present theoretical results,
what is needed most are more accurate experimental and/or 5eld data. In particular, it would be
useful to obtain laboratory data at lower temperatures and at higher frequencies. At the same time,
intercomparisons of 5eld data and the sensitivity of retrieved quantities to the continuum parametriza-
tions (both self and foreign) could shed light on where the empirical or theoretical models could be
improved.

Finally, we note that at the higher frequencies, the “dry continuum” due to the collision-induced
absorption in N2–N2, N2–O2, and O2 − O2 pairs has to be taken into account. While the N2–N2

absorption is contained in the various empirical models, we have recently shown [21] that the
absorption of N2 − O2 increases this by approximately 35%, and should be included.
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